“Life on Mars”: Art and astrobiology in Brooklyn


Last weekend, I had the opportunity to talk about Mars One with a crowd of art-lovers who also appreciate astronomy (or, perhaps, astronomy devotees who also appreciate art). The format was a panel discussion on Mars exploration with a focus on astrobiology (i.e., the possibility of life on the Red Planet), and the venue was Grumpy Bert, a gallery and event space in Brooklyn run by  (Here’s a flyer for the event.)

I shared the stage (the staircase, to be precise) with Caleb Scharf, Director of Astrobiology at Columbia University, and our conversation was mediated by Miriam Kramer of SPACE.com. The event was facilitated by Summer Ash, Director of Outreach at Columbia’s Department of Astronomy.


Summer live-tweeted the event, and I’ve compiled her photos and tweets (along with some images taken by gallery owner Albert Chau, the eponymous Grumpy Bert) as a Storify, here.

For the first part of the discussion, Miriam guided Caleb and me through an overview of our reasons for believing that Mars was once a warm wet world, potentially hospitable to life as we know it, and how past life might have left traces in the soil and rock of the planet.

Throughout the conversation, we repeatedly returned to the mantra of astrobiology: “Follow the water.” Thanks to the efforts of several robotic missions, we are now fairly confident that the Martian soil contains a significant percentage of water (as ice), and that water may still flow on or immediately under the surface under some conditions during warmer seasons. This led to some enjoyable speculation about how life might still persist on Mars, possibly deep beneath the visible surface, analogous to the subsurface lithoautotrophic microbial ecosystems (SLiMEs, one of the best acronyms ever) here on Earth.

Caleb was a delightful partner for the event, and (unsurprisingly, given that he actually does astrobiology for a living), I learned a great deal, especially about the ancient history and evolution of Mars (about which more below). We also had really good stage chemistry, and our interactions led to some memorable exchanges:


We could probably have continued in that vein for hours, but we also wanted to open the floor for questions, which occupied the last half of our time on the stairs. The audience was enthusiastic about every aspect of the topic, and the questions were split roughly equally between Martian planetology and more directed queries about Mars One. Here are a couple of quick examples, based on some notes I took (on my hand) while we answered:

Q: Why is Mars dry? (i.e., where did the water go?)

A: We’re not sure, and because we don’t actually know how much water was originally present, it’s hard to make confident assertions about where it went. (It’s worth mentioning that there’s still a huge amount of water on Mars in absolute terms, enough in the southern polar cap to cover the planet in an ocean 10 meters deep, so one might just as well as ‘Why is Mars cold?’ Turns out the answer is related.) Caleb offered a number of possible explanations, most of which ultimately invoked Mars’ (present) lack of a magnetic field: no planetary dynamo –> no magnetic field –> no way to hold on to hydrogen ions produced when atmospheric water is split by solar radiation.

Q: Is radiation exposure an obstacle to permanent settlement on Mars? 

A: My thinking on this is evolving, but the basic framework for my answer is that radiation dose is a function of the environment and the technology we bring with us. One of the major controversies about Mars One is whether the project’s plans for radiation abatement are sufficient, and at the moment that’s still an active debate. That said, there is certainly no inherent reason why radiation would be an absolute barrier to success; we just have to make sure that we use the right shielding technology for the interplanetary voyage, and then get under as much rock as we can as soon as possible once we’re there. Which leads us to…

Q: Why don’t you plan to live in caves?

A: In some ways caves would be optimal, and from orbital imagery we already know that there are many, many caves on Mars that are open to the surface. Indeed, serious thought has gone into choosing the right caves for human settlement (q.v. the Caves of Mars Project). That said, the Mars One landing site (TBD) will be chosen subject to a large number of constraints: far enough north that there’s plenty of water in the regolith; far enough south that solar power could be collected efficiently; and flat enough that the landing itself is straightforward. If there’s a cave near an appropriate site, then I say go for it. That said, there might not be.

Q: Will you terraform Mars?

A: Not me personally; it takes kind of a long time. Early efforts will focus on constructing enclosed habitats in which humans can live increasingly independently of pressure suits and radiation shielding, but without any efforts made toward true planetary engineering. The audience member followed up by asking the possibility of domes, to which Caleb replied by describing something I’d never thought of before: rather than freestanding domes, settlers could tent existing valleys, taking advantage of the natural protection of the rock and requiring less shielding material to boot—”like a human-made cave with a skylight.”

There were many more excellent questions—about the psychological stresses of a one-way trip, the structure and architecture of the settler’s habitats, the rate of meteorite strikes (which I really need to look up), and a variety of planetological issues. Overall, we had a fantastic and wide-ranging discussion.

Afterward, the venue opened into a gallery showing of Mars-themed art, which you can check out here. (Some of it is still available.) I was tempted to purchase some myself, especially the APAK piece that was used for the event flyer, but sadly it was a bit too rich for my blood. Rich benefactors, contact me via the form on the About page 😉


As we wandered through the intimate gallery, the conversation broke up into one-on-one interactions devoted to follow-up questions. I met a number of fantastic people, many of whom I’ve stayed in touch with on Twitter. The overall tone was one of excitement, curiosity, and wonder. From what I could see, many people who walked in with no idea that the Mars One Project even existed walked away convinced that it could succeed. More importantly, everyone (including me) learned a great deal about the science of Mars (and science on Mars), and I consider the event to have been a smashing success.

Many thanks to Caleb, Miriam, Summer, Albert, and Lynne for a fantastic event. I’m actively seeking more opportunities to talk about the project (and Mars in general) to groups of whatever size in the weeks and months to come.

“No ‘Big Brother’ on Mars”: Darlow Smithson to televise the Mars One selection process


We now know that Darlow Smithson Productions will be responsible for generating the TV and internet media broadcasts of the Mars One selection process. This news is official (press releases: Mars One | DSP; articles in the media press here and here), and supersedes preliminary reports from last month suggesting that Lionsgate would be attached to the project.

Darlow Smithson, which will be Mars One’s exclusive worldwide production partner, specializes in ‘factual production’, i.e., documentaries and reality TV. The company’s resumé includes several forays into programming focused on space exploration (Earth From Space, Neil Armstrong: First Man on the Moon, Finding Life Beyond Earth) and  science and technology more generally (Hawking and the more populist Smash Lab). DSP’s parent company, Endemol, is the mammoth conglomerate responsible at some level for perpetrating long-running harbinger of the apocalypse Big Brother, prompting concern from multiple quarters regarding the tone of the planned production. As I wrote previously (prior to this announcement):

UnknownI’m not convinced that a population of high-strung physical beauties is likely to be enriched for the skills needed to ensure the success of the mission. There is a significant tension between what makes for good television and what would make for rigorous selection and training of literal astronauts planning to risk their literal lives. …

Reality TV has reimagined Lord of the Flies, explored the petty depravity of rats in a cage, and invited us time and again to jeer at the antics of moral imbeciles, but it has very rarely explored the quiet victories of humans at our best.

This concern was widespread (and, I daresay, reasonable) enough that Mars One  included the following reassurance in an email announcement it sent directly to the candidates:

UnknownNo Big Brother on Mars please
We feel it is important to report on humanity’s next giant leap in an inspiring way, sharing the story with the world. Bas Lansdorp, Co-founder & CEO of Mars One said, “Our team felt all along that we needed a partner whose strength lies in factual storytelling to an international audience. DSP will provide that to Mars One, while allowing our selection committee to maintain control of the astronaut selection process.”

The implication is that although Mars One and DSP will televise the selection process in an unscripted-drama format, they intend to create a production of a fundamentally different kind than we’ve ever seen before, consistent with the unprecedented nature of the project. For the record, I believe that their intentions are good and their statements genuine, and (based on my review of their past work and my vast experience in such matters) I think DSP sounds like a good choice. I’m looking forward to seeing the results, possibly as early as 2015–and hopefully including me.

(In any case, Endemol is a conglomerate of some 90 companies, so it would be more than a little unfair to declare Darlow Smithson guilty by association. From what I can tell, DSP is committed to making truly educational TV, and the reality offerings in their stable appear to have genuine integrity [e.g.]. At the end of the day, it’s hard not to like a house that has produced three separate shows about Stephen Hawking.)

Now for the six-billion-dollar question: What will this selection process entail? According to an earlier communication with the candidates, the next step in this process will be a round of interviews in which candidates will hope to demonstrate their “knowledge, intelligence, adaptability and personality” (and, presumably, telegenicity). Details of the interview process are scarce, but it is clear that at this stage we will be competing primarily against candidates from our own geographical regions. From there, it appears that the selection will become significantly more involved:

UnknownIn order to qualify for the mission, each individual must demonstrate that they have acquired the intricate knowledge and skills as well as the high levels of psychological and physical performance needed for the most long distance voyage humankind has ever embarked upon. (source)

In a conventional interview, It is difficult to carefully evaluate deep knowledge, and probably impossible to meaningfully assess the ability to perform psychologically and physically. Therefore, my best guess is that early interviews of the usual sort (either live or mediated by Internet video chat) will eliminate some percentage of the remaining 706 aspirants, after which the remaining candidates will  be invited to participate in activities that showcase their ability to rapidly learn complex bodies of knowledge, apply their knowledge practically under demanding conditions, and prove that they can tolerate physical and psychological stress.

I, for one, think that will make for some excellent viewing.

Talking about Mars One on “This Week in Science”

Last week, my friend Kirsten Sanford (aka @drkiki) invited me to talk about Mars One with the lovable lunatics at This Week in Science, “a weekly hour-long web and radio show presenting an humorous, often opinionated, and irreverent look at the week in science and technology”.

Check, check, and check — we had a great time and more than a few laughs discussing Mars One, Mars exploration in general, and a variety of related topics, including what the heck you call the gangway that the astronauts walked in “The Right Stuff”. Many thanks to Kiki, Justin, and Blair for a delightful evening.

The show itself ran more than an hour, and the Mars section itself is around 45 minutes long, so I cued up the video below to start right before we dive into the conversation about Mars (if that isn’t working, you can either scan ahead to 47 min 30 sec or just click here). The length is a good thing, especially for those of you who have asked for a more in-depth discussion—unlike the short WBZ interview that ran the previous week, we do a much better job of explaining some of the broader justifications and finer details of the project.


If you like what you see, I encourage you to view the whole show and consider checking out their other episodes. TWiS is live (on video) every Thursday at 8 PM Pacific time, and if you can’t catch the live broadcast, they have a YouTube channel and a podcast.

ERRATUM: During the interview I got something wrong about the Hohmann transfer orbit from Earth to Mars: the launch from Earth does not happen at perigee (when Earth is closest to the sun). My statement to the contrary was based on an old, unexamined misunderstanding (which I am now grateful for the opportunity to have examined). Obviously, if the launch window opens every 26 months, it can’t be the case that Earth’s position relative to the sun is always the same. Instead, the relevant parameters are the relative positions of Earth and Mars. For a better explanation of the orbital mechanics involved in determining Earth–Mars trajectories and launch windows, see here and here.

Fifteen seconds of fame: CBS Boston interview

Here are my first TV appearances as a Mars One candidate: excerpts from an interview with WBZ, preceded by  a promo spot that ran for a couple of days before the feature was broadcast. Hot tip: you must see the end of the main feature; the anchor says something priceless. Ladies, please form an orderly line.

Destination Mars (promo)

Two Somerville Residents On Short List For One-Way Trip To Mars

Talking on camera was not entirely new to me, but this was the first time that I spoke at length (more than 30 minutes) knowing that very little of what I said would actually be broadcast. I got some good advice from a friend in the TV news business about trying to speak in short, pithy sentences—rather than whole paragraphs, which is how I usually talk. I think I got a few good points across, and overall the experience was quite enjoyable.

I’m hoping for more opportunities to spread the word about Mars One in the coming weeks. Next stop will be the This Week in Science webcast — tonight!

Talking about Mars One with the Class of 2025


I’ve been actively seeking opportunities to talk to people about the Mars One Project and my participation in it. As it turns out, one of my first chances to talk to a group arose at Loveland Elementary in Omaha, Nebraska — where I was a student more than 30 years ago — in a free-form discussion with the first-grade class The experience was joyous, educational (in both directions), and at times hilarious.

I confess that I had some initial trepidation: I feared that first grade might be too early, that 7-year-olds are too young to benefit from a conversation about space exploration. But that anxiety dissipated within a few seconds after entering the classroom. I was mobbed by students, every one of them full of questions, thrilled by the prospect of talking to someone who, someday, might be a real live astronaut.

Their questions were uniformly excellent; I would add “…for their level”, but I it turns out that their level was surprisingly high. Simple inquiries early on (“How do you get there?”)  led rapidlyto follow-ups that demonstrated an impressive understanding of the issues involved. After a quick discussion of rocketry, the students wanted to know what happened to the booster stages after they fell off the launcher, how the ship would slow down to enter Martian orbit, how the astronauts would get out of the lander, and how anything could stay in place on the surface of Mars. These questions led to lively discussions of recoverable launch vehicles, aerobraking, airlocks, and the differences between microgravity (in the interplanetary vessel) and reduced gravity (on a planet smaller than Earth). I didn’t even have to stay away from ‘big words,’ just define them carefully at a measured pace; the follow-ups made it clear that the students were staying with me. Each question provided a chance to teach a scientific principle, or elaborate one that the students already knew.


The overall tone was one of wonder. In pleasant contrast to some of the more challenging (though still delightful) conversations I’ve had with adults, the children were curious without being critical, and more interested in how to make it work than why it might not.

That said, they were aware of the potential risks, and intrigued by them. One theme, to which we returned more than once, could be summarized by one of the first questions: “What if your rocket breaks?” (That was a girl; the boys tended more toward gleeful hectoring about the possibility of A CRASH.)

This was a difficult issue to address because the answer is scary (to me), and the last thing I want to do is frighten children; if nothing else, that would be inconsistent with the educational mission of a presentation like this one. So I tried to do what I always try to do with young kids: tell the truth in a way that is sensitive to their stage of emotional development. I told them about how the equipment would be tested to avoid failures, and the astronauts trained to solve problems, and the options available if something goes wrong. Ultimately, though, I had to say: “This is dangerous, the same way it was for our ancestors to go to new places and cross oceans. When I think about it, I’m a little scared sometimes, because it’s risky. But it’s important, so we want to try.” And they thought about that, and I could see the concern on their faces. They were OK with it; they understood. I’m glad I was frank.

Rather than focusing on the potential downsides, however, the class was more interested in practical considerations, like how we would eat, drink, breathe, and (of course) go to the bathroom. One marvelous wacky girl wanted to know how we would keep our wigs on. Wigs.

Most gratifying to me, and most touching, was the way in which the children put themselves in the position of an astronaut/settler, as evidenced by questions like “How would you talk to your mom and dad?”, “Can I bring my cat?”, and “How do you get home?” They weren’t thinking of Mars settlement as something that will happen to someone else. Instead, they were asking the questions they would need to answer for themselves if they had the opportunity to go.


I came away from the experience more certain than ever that Mars One provides a precious opportunity to encourage young people to be interested in science. If all goes well, the Project will be the Apollo of this generation, and the media produced about it will provide countless opportunities for integration into science and writing curricula. I’m not sure that Mars One will be the effort that gets us to Mars, and I’m certainly not sure that I’ll be one of the few who are chosen to go. But I am sure that on Earth, right now, for sure, Mars One can inspire a generation, and I’m committed to finding more opportunities to engage with students of every age about the Project.

[If your school or summer program is interested in incorporating a talk by a Mars One candidate into your curriculum, please contact me using the form on the About page. If I can, I’d love to do it; if not, I can refer you to someone who is closer to you. I’m living in the Boston area, but there are candidates all over the world. We can make this happen.]

The Class of 2025 will be graduating from high school when the first colonization vessels leave Earth for Mars. Their generation will see humanity settle the solar system; the science educations they receive now will enable them contribute to those efforts.

I may go; I may not—but they will. It is never too early to start talking about it.

Building the Future Spacesuit: Dava Newman speaks 5/15


Prof. Dava Newman of MIT, designer of the BioSuit (the svelte next-generation spacesuit I blogged about recently) will be speaking in this Thursday evening (May 15) at the Harvard-Smithsonian Center for Astrophysics monthly Observatory Night (event details):

UnknownRussia, the U.S., and newcomer China all have ambitious plans for the human conquest of space. Their future destinations: the Moon, an asteroid, and eventually Mars. But 21st century exploration demands 21st century spacesuits. Come see what MIT professor Dava Newman has designed – the spacesuit of the future. Combining fashion and functionality, it provides astronauts new flexibility and range of motion. This is the end of the bulky moon look!

The event, which starts at 7:30, is open to the public. The organizers plan to open the doors a bit earlier if it’s raining.

I’m heartbroken that I can’t be there myself. Fortunately for me and others who are outside of Boston, there will be a livestream of the event (linked on the page below), and hopefully a recorded video will eventually be posted online.

UPDATE: The talk can be viewed in its entirety here.

Does this spacesuit make me look fat?

NASA has unveiled a prototype design for the Z-2 suit, the newest member of its next-generation Z series of spacesuits. The suit, still under development, is intended to meet a long list of ambitious goals, including full mobility on planetary surfaces and tolerance of hard vacuum. The new design, named “Technology”, beat out two other proposals (“Biomimicry” and “Trends in Society”) in a selection process culminating in an online vote.


The suit will allow an unprecedented range of motion for astronauts, including the ability to kneel down while collecting samples or conducting other work (an ability not available to the Apollo astronauts, the last humans to walk on a planetary body other than Earth). In addition, with the assistance of 3D laser scans and 3D-printing technology, the Z-2 is designed to be conformable and re-sizable to the upper torso of the astronauts, presumably improving both function and comfort.  The prototype is still an early version; the choice of materials for radiation shielding, impact resistance, and protection against abrasion are yet to be determined.

The Z-2 is not the only next-generation design for extraterrestrial couture—and it is far from the most svelte. Also in the works is Dava Newman of MIT’s BioSuit, which is intended to protect astronauts by providing mechanical counter-pressure, analogous to the way a pressure bandage prevents swelling (see Dr. Newman’s TED talk here).

dava-newman-04-578x437One advantage of a mechanical system is that the failure modes are very different from those of a pressurized suit, with the effects of a breach potentially limited to a single site rather than causing a catastrophic loss of air. One can imagine something like BioSuit being worn under a more classically inspired suit like the Z-2, providing an extra layer of redundant protection against depressurization. Currently, the BioSuit remains under active development, and has yet to be integrated with life-support and other essential systems.

Granted that the two suits are designed to satisfy different sets of constraints—speaking solely from an aesthetic standpoint, I know which one I’d prefer to wear.


It’s official: I’m moving on to the interview round

An email I received yesterday.


Dear Dr. Christopher Kashinath Patil,

We’re writing you today to confirm that you are one of 706 candidates that will be invited for an interview in your region with a Mars One selection committee.

From the originally 1058 pre-selected astronaut candidates, nearly one-third dropped out in the first phase of this selection round. Besides not being able to provide the medical statement or make their profile public, several others withdrew their candidacy due to personal reasons.

Regional interviews
The dates and locations of the regional interviews will be communicated over the next months. In your personal interview we expect you to show your knowledge, intelligence, adaptability and personality.

We’re looking forward to informing you on the next steps of the astronaut selection process!

Best regards,

Mars One Selection Committee

Great! Now all I need is knowledge, intelligence, adaptability, and personality.


Landing heavy things on Mars

The Martian atmosphere is too thin for parachutes to be efficient, but too thick to allow landers to decelerate using only rocket engines. Consequently, a great deal of ingenuity is required to drop massive objects (like robots, and one day, people) onto the Martian surface without breaking them. (via space.com)

Here’s a beautiful graphical review of the approaches we have used in the past — and one prospect for delivering even larger payloads in the future.

landing heavy payloads on mars

Mars One medical director outlines next round of selection

In this short interview, Dr. Norbert Kraft, the medical advisor of the Mars One Project, describes the next round of selection, which will take place over the next few months.

LINK: Mission to Mars Medical Director

From more than 200,000 applicants, 1058 Round 2 candidates were selected. Of that 1058, 715 (including me!) passed a series of required medical exams. Now, the candidates will undergo interviews and as-yet-unspecified “additional challenges” aimed at selecting representatives from specific geographical regions.

As we already know, the plurality of applicants (28%) came from the USA, which means that the geographically based competition will be fiercer for Americans. Fortunately for us, it sounds like the country will be split up into smaller segments (East Coast, West Coast, and Central). Still, each of those groups amounts for almost 10% of the total applicant pool.

Getting through the next round is going to be challenging.