Talking about Mars One on “This Week in Science”

Last week, my friend Kirsten Sanford (aka @drkiki) invited me to talk about Mars One with the lovable lunatics at This Week in Science, “a weekly hour-long web and radio show presenting an humorous, often opinionated, and irreverent look at the week in science and technology”.

Check, check, and check — we had a great time and more than a few laughs discussing Mars One, Mars exploration in general, and a variety of related topics, including what the heck you call the gangway that the astronauts walked in “The Right Stuff”. Many thanks to Kiki, Justin, and Blair for a delightful evening.

The show itself ran more than an hour, and the Mars section itself is around 45 minutes long, so I cued up the video below to start right before we dive into the conversation about Mars (if that isn’t working, you can either scan ahead to 47 min 30 sec or just click here). The length is a good thing, especially for those of you who have asked for a more in-depth discussion—unlike the short WBZ interview that ran the previous week, we do a much better job of explaining some of the broader justifications and finer details of the project.

 

If you like what you see, I encourage you to view the whole show and consider checking out their other episodes. TWiS is live (on video) every Thursday at 8 PM Pacific time, and if you can’t catch the live broadcast, they have a YouTube channel and a podcast.

ERRATUM: During the interview I got something wrong about the Hohmann transfer orbit from Earth to Mars: the launch from Earth does not happen at perigee (when Earth is closest to the sun). My statement to the contrary was based on an old, unexamined misunderstanding (which I am now grateful for the opportunity to have examined). Obviously, if the launch window opens every 26 months, it can’t be the case that Earth’s position relative to the sun is always the same. Instead, the relevant parameters are the relative positions of Earth and Mars. For a better explanation of the orbital mechanics involved in determining Earth–Mars trajectories and launch windows, see here and here.

Advertisements

Fifteen seconds of fame: CBS Boston interview

Here are my first TV appearances as a Mars One candidate: excerpts from an interview with WBZ, preceded by  a promo spot that ran for a couple of days before the feature was broadcast. Hot tip: you must see the end of the main feature; the anchor says something priceless. Ladies, please form an orderly line.

Destination Mars (promo)

Two Somerville Residents On Short List For One-Way Trip To Mars

Talking on camera was not entirely new to me, but this was the first time that I spoke at length (more than 30 minutes) knowing that very little of what I said would actually be broadcast. I got some good advice from a friend in the TV news business about trying to speak in short, pithy sentences—rather than whole paragraphs, which is how I usually talk. I think I got a few good points across, and overall the experience was quite enjoyable.

I’m hoping for more opportunities to spread the word about Mars One in the coming weeks. Next stop will be the This Week in Science webcast — tonight!

Talking about Mars One with the Class of 2025

SONY DSC

I’ve been actively seeking opportunities to talk to people about the Mars One Project and my participation in it. As it turns out, one of my first chances to talk to a group arose at Loveland Elementary in Omaha, Nebraska — where I was a student more than 30 years ago — in a free-form discussion with the first-grade class The experience was joyous, educational (in both directions), and at times hilarious.

I confess that I had some initial trepidation: I feared that first grade might be too early, that 7-year-olds are too young to benefit from a conversation about space exploration. But that anxiety dissipated within a few seconds after entering the classroom. I was mobbed by students, every one of them full of questions, thrilled by the prospect of talking to someone who, someday, might be a real live astronaut.

Their questions were uniformly excellent; I would add “…for their level”, but I it turns out that their level was surprisingly high. Simple inquiries early on (“How do you get there?”)  led rapidlyto follow-ups that demonstrated an impressive understanding of the issues involved. After a quick discussion of rocketry, the students wanted to know what happened to the booster stages after they fell off the launcher, how the ship would slow down to enter Martian orbit, how the astronauts would get out of the lander, and how anything could stay in place on the surface of Mars. These questions led to lively discussions of recoverable launch vehicles, aerobraking, airlocks, and the differences between microgravity (in the interplanetary vessel) and reduced gravity (on a planet smaller than Earth). I didn’t even have to stay away from ‘big words,’ just define them carefully at a measured pace; the follow-ups made it clear that the students were staying with me. Each question provided a chance to teach a scientific principle, or elaborate one that the students already knew.

SONY DSC

The overall tone was one of wonder. In pleasant contrast to some of the more challenging (though still delightful) conversations I’ve had with adults, the children were curious without being critical, and more interested in how to make it work than why it might not.

That said, they were aware of the potential risks, and intrigued by them. One theme, to which we returned more than once, could be summarized by one of the first questions: “What if your rocket breaks?” (That was a girl; the boys tended more toward gleeful hectoring about the possibility of A CRASH.)

This was a difficult issue to address because the answer is scary (to me), and the last thing I want to do is frighten children; if nothing else, that would be inconsistent with the educational mission of a presentation like this one. So I tried to do what I always try to do with young kids: tell the truth in a way that is sensitive to their stage of emotional development. I told them about how the equipment would be tested to avoid failures, and the astronauts trained to solve problems, and the options available if something goes wrong. Ultimately, though, I had to say: “This is dangerous, the same way it was for our ancestors to go to new places and cross oceans. When I think about it, I’m a little scared sometimes, because it’s risky. But it’s important, so we want to try.” And they thought about that, and I could see the concern on their faces. They were OK with it; they understood. I’m glad I was frank.

Rather than focusing on the potential downsides, however, the class was more interested in practical considerations, like how we would eat, drink, breathe, and (of course) go to the bathroom. One marvelous wacky girl wanted to know how we would keep our wigs on. Wigs.

Most gratifying to me, and most touching, was the way in which the children put themselves in the position of an astronaut/settler, as evidenced by questions like “How would you talk to your mom and dad?”, “Can I bring my cat?”, and “How do you get home?” They weren’t thinking of Mars settlement as something that will happen to someone else. Instead, they were asking the questions they would need to answer for themselves if they had the opportunity to go.

SONY DSC

I came away from the experience more certain than ever that Mars One provides a precious opportunity to encourage young people to be interested in science. If all goes well, the Project will be the Apollo of this generation, and the media produced about it will provide countless opportunities for integration into science and writing curricula. I’m not sure that Mars One will be the effort that gets us to Mars, and I’m certainly not sure that I’ll be one of the few who are chosen to go. But I am sure that on Earth, right now, for sure, Mars One can inspire a generation, and I’m committed to finding more opportunities to engage with students of every age about the Project.

[If your school or summer program is interested in incorporating a talk by a Mars One candidate into your curriculum, please contact me using the form on the About page. If I can, I’d love to do it; if not, I can refer you to someone who is closer to you. I’m living in the Boston area, but there are candidates all over the world. We can make this happen.]

The Class of 2025 will be graduating from high school when the first colonization vessels leave Earth for Mars. Their generation will see humanity settle the solar system; the science educations they receive now will enable them contribute to those efforts.

I may go; I may not—but they will. It is never too early to start talking about it.

Building the Future Spacesuit: Dava Newman speaks 5/15

davanewman

Prof. Dava Newman of MIT, designer of the BioSuit (the svelte next-generation spacesuit I blogged about recently) will be speaking in this Thursday evening (May 15) at the Harvard-Smithsonian Center for Astrophysics monthly Observatory Night (event details):

UnknownRussia, the U.S., and newcomer China all have ambitious plans for the human conquest of space. Their future destinations: the Moon, an asteroid, and eventually Mars. But 21st century exploration demands 21st century spacesuits. Come see what MIT professor Dava Newman has designed – the spacesuit of the future. Combining fashion and functionality, it provides astronauts new flexibility and range of motion. This is the end of the bulky moon look!

The event, which starts at 7:30, is open to the public. The organizers plan to open the doors a bit earlier if it’s raining.

I’m heartbroken that I can’t be there myself. Fortunately for me and others who are outside of Boston, there will be a livestream of the event (linked on the page below), and hopefully a recorded video will eventually be posted online.

UPDATE: The talk can be viewed in its entirety here.

Does this spacesuit make me look fat?

NASA has unveiled a prototype design for the Z-2 suit, the newest member of its next-generation Z series of spacesuits. The suit, still under development, is intended to meet a long list of ambitious goals, including full mobility on planetary surfaces and tolerance of hard vacuum. The new design, named “Technology”, beat out two other proposals (“Biomimicry” and “Trends in Society”) in a selection process culminating in an online vote.

z2_final_web

The suit will allow an unprecedented range of motion for astronauts, including the ability to kneel down while collecting samples or conducting other work (an ability not available to the Apollo astronauts, the last humans to walk on a planetary body other than Earth). In addition, with the assistance of 3D laser scans and 3D-printing technology, the Z-2 is designed to be conformable and re-sizable to the upper torso of the astronauts, presumably improving both function and comfort.  The prototype is still an early version; the choice of materials for radiation shielding, impact resistance, and protection against abrasion are yet to be determined.

The Z-2 is not the only next-generation design for extraterrestrial couture—and it is far from the most svelte. Also in the works is Dava Newman of MIT’s BioSuit, which is intended to protect astronauts by providing mechanical counter-pressure, analogous to the way a pressure bandage prevents swelling (see Dr. Newman’s TED talk here).

dava-newman-04-578x437One advantage of a mechanical system is that the failure modes are very different from those of a pressurized suit, with the effects of a breach potentially limited to a single site rather than causing a catastrophic loss of air. One can imagine something like BioSuit being worn under a more classically inspired suit like the Z-2, providing an extra layer of redundant protection against depressurization. Currently, the BioSuit remains under active development, and has yet to be integrated with life-support and other essential systems.

Granted that the two suits are designed to satisfy different sets of constraints—speaking solely from an aesthetic standpoint, I know which one I’d prefer to wear.